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A new remote buffer overflow vulnerability was discovered in the SharkSSL library from 05th May 2024 

(https://github.com/RealTimeLogic/SharkSSL/commit/64808a5e12c83b38f85c943dee0112e428dc2a4

3) by security evaluators of Deutsche Telekom Security GmbH and Deutsche Telekom AG with modern 

fuzzing methods. The vulnerability allows an attacker to read large regions of the SharkSSL TLS server’s 

memory. This is likely to result in a segmentation fault and can be used for a remote Denial-of-Service 

attack by an attacker. The vulnerability has been reported to the vendor and was patched on 07th Sep 

2024 (commit hash: c585490e9567733095d3134eadc054bcc7cec34e) 

Special thanks to Robert Hörr for his support, supervision and guidance during this research. 

What is the SharkSSL library? 

SharkSSL is an open-source software that provides security implementations of various protocols 

including TLS, WebSocket, MQTT, SMTP etc. for embedded devices, but SharkSSL is not exclusive to this 

field of application. Especially TLS is a security protocol to ensure communication of two endpoints over a 

network like the Internet in a secure way, thus an attacker is not able to read or modify the exchanged 

data. 

How was the vulnerability discovered? 

Software projects usually gain in complexity over time, especially when many additional features are 

introduced. Therefore, it is hard to perform source code reviews manually by human with reasonable 

coverage in feasible time. For this reason, modern fuzzing methods are utilized to discover vulnerabilities 

like buffer overflows automatically. Among others, libFuzzer and AdressSanitizer have been used for 

automatically testing this software. LibFuzzer is a code-coverage based fuzzer and has been combined 

with AdressSanitizer, which detects memory errors at runtime. The TLS handshake implementation of 

SharkSSL has been tested using these two combined methods. 

Where is the vulnerability located in the source code? 

The vulnerability is located in the TLSv1.2 server-site handshake implementation. The function 

seSec_handshake is performing the TLS handshake using the socket and context information about the 

TLS connection. This function invokes the function handleptrauth which parses the TLS Extensions of a 

received Client Hello message. In handleptrauth the Extension Length field of the TLS Client Hello 

message is provided in the unsigned 16-bit integer variable len. So, an attacker can manipulate the value 

of this variable. 

Within the function there is a loop with condition len > 2 and it decrements the variable len multiple 
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times in each iteration. Also, the pointer registeredevent points to the Client Hello message inside the 

memory and is incremented multiple times as well as de-referenced in each iteration. 

As mentioned above, the loop subtracts small values from len repeatedly, which leads to an integer wrap 

around and resulting in a high value. This in conjunction with the loop condition and the iteratively 

incrementation of registeredevent leads to a buffer overflow. 

 

A variant of this vulnerability allows a controlled manipulation of the pointer registeredevent. A case 

distinction allows the addition of this pointer by a variable named paramnamed. This is an unsigned 16-bit 

integer value read from the TLS Extensions section, thus an attacker-controlled value. Additional to the 

incrementations of the pointer registeredevent as described above, that exact pointer is added with 

the value of paramnamed. In combination with the loop iterations an iterative increase of 

registeredevent by a chosen value might be possible, thus a controlled manipulation of the pointer 

cannot be ruled out. 

 

In the Appendix, a function trace is provided including one location of the pointer de-reference triggering 

the overflow. Also, the code location of the pointer manipulation using controlled variable paramnamed is 

shown there. 

How is the vulnerability exploitable by an attacker? 

The vulnerability can be used to trigger reads of memory locations beyond the allocated buffer. The loop 

structure allows repetitive manipulations of the pointer registeredevent, which can be used for reading 

memory locations of unknown extend. Usually, these accesses of memory results in segmentation faults 

and leads to termination of the program. This can be exploited to perform a remote Denial-of-Service 

attack against the TLS server and implies that clients are not able to connect to the TLS server anymore. 

Especially in the context of Operational-Technology (OT), where SharkSSL seems to be used, availability is 

an important objective. 

The controlled manipulations of the pointer might be used to trigger an information leak at later points of 

the control flow. By utilizing write instruction e.g. memcpy or internal functions Remote-code-Execution 

might be possible. 

What do we learn from this? 

Code coverage-based fuzzing combined with the AddressSanitizer is a powerful method to discover 

vulnerabilities e.g. buffer overflows. With increasingly complex source codes, it is a resource efficient 

alternative to source code reviews, because this fuzzing approach can be done mainly automatically. As 

there exist many approaches for fuzzing, it is the art of fuzzing to find the best approach. We have already 

discovered several vulnerabilities with our fuzzing approach. 

  



Appendix: Code section with buffer overflow 

This is an example section of SharkSSL.c that can trigger the buffer overflow. In the same function are 

multiple sections like this which can trigger the overflow, too. 

2383  while (len >= 2) 

2384  { 

2385        prminstwrite = (U16)(*registeredevent++) << 8; 

2386        prminstwrite += *registeredevent++; 

2387        len -= 2; 

  [...] 

 

Appendix: Code section with manipulation by variable paramnamed 
This example shows the manipulation of the pointer registeredevent by the variable paramnamed. 

The variable can might be used to control the value of the pointer. 

2795  default:   

2796   len -= paramnamed; 

2797   registeredevent += paramnamed; 

2798   break; 

  [...] 

Appendix: AddressSanitizer output 
Output from AddressSanitizer on accessing a memory location beyond the allocated memory. This is 

triggered by a malformed TLS Client Hello message. The shown location within handleptrauth is one 

example of the overflow. The root cause is the integer wrap around as discussed above. 

==30620==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61d0000048d4 
at pc 0x64589a078111 bp 0x7ffc220ab8d0 sp 0x7ffc220ab8c8 
READ of size 1 at 0x61d0000048d4 thread T0 
    #0 0x64589a078110 in handleptrauth /SharkSSL/src/SharkSSL.c:2385:29 
    #1 0x64589a060d5f in configdword /SharkSSL/src/SharkSSL.c:4446:22 
    #2 0x64589a0f8d77 in SharkSslCon_decrypt SharkSSL/src/SharkSSL.c:21428:19 
    #3 0x64589a11589b in seSec_readOrHandshake selib.c 
    #4 0x64589a107a72 in main SharkSSL/tools/server_handshake.c:66:20 
    #5 0x724c0a429d8f in __libc_start_call_main 
csu/../sysdeps/nptl/libc_start_call_main.h:58:16 
    #6 0x724c0a429e3f in __libc_start_main csu/../csu/libc-start.c:392:3 
    #7 0x645899f8b3a4 in _start (/SharkSSL/tools/server_handshake+0x283a4) 
(BuildId: 2d7e8f38becbb19370010f359396e2b70cf2cd7e) 
 
Address 0x61d0000048d4 is a wild pointer inside of access range of size 
0x000000000001. 
SUMMARY: AddressSanitizer: heap-buffer-overflow 
/SharkSSL/tools/./../src/SharkSSL.c:2385:29 in handleptrauth 

 

 

 

 



 
Shadow bytes around the buggy address: 
  0x0c3a7fff88c0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff88d0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff88e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff88f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff8900: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
=>0x0c3a7fff8910: fa fa fa fa fa fa fa fa fa fa[fa]fa fa fa fa fa 
  0x0c3a7fff8920: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff8930: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff8940: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff8950: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
  0x0c3a7fff8960: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa 
Shadow byte legend (one shadow byte represents 8 application bytes): 
  Addressable:           00 
  Partially addressable: 01 02 03 04 05 06 07  
  Heap left redzone:       fa 
 [...] 

 


